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Abstract In this paper, we present new convergence results of augmented Lagrangian
methods for mathematical programs with complementarity constraints (MPCC). Modified
augmented Lagrangian methods based on four different algorithmic strategies are consid-
ered for the constrained nonconvex optimization reformulation of MPCC. We show that the
convergence to a global optimal solution of the problem can be ensured without requiring
the boundedness condition of the multipliers.
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1 Introduction

Consider the following mathematical program with complementarity constraints (MPCC):

min f (x)

s.t. Gi (x) ≥ 0, Hi (x) ≥ 0, Gi (x)Hi (x) = 0, i = 1, . . . ,m1,

g j (x) ≤ 0, j = 1, . . . ,m2,

hl(x) = 0, l = 1, . . . ,m3,

x ∈ X,

where f , Gi , Hi , g j and hl : R
n → R are all continuously differentiable functions, and X is

a nonempty closed set in R
n .

Mathematical program with complementarity constraints is an important class of opti-
mization problems with wide applications in economics and engineering [20]. Due to the
presence of the complementarity constraints, Mangasarian–Fromovitz constraint qualifica-
tion (CQ) or the linear independence CQ is never satisfied at any feasible point of MPCC
[32]. Traditional nonlinear programming methods are therefore not applicable to MPCC. It
has been shown in [24] that the linear complementarity problem is equivalent to the linear
integer 0–1 feasibility problem. In the case of linear complementarity constraints this makes
the problem computationally more tractable. Some complementarity problems can be viewed
as special cases of variational inequalities (see, e.g., [10,11]). In recent years, MPCC has
attracted much attention in nonlinear optimization. A comprehensive and in-depth theoretical
study of MPCC can be found in [8,32]. Various methods for MPCC have been proposed (see
e.g., [7,9,13,30,31] and the references therein).

One of the approaches for MPCC is to reformulate it as a constrained optimization
problem by NCP function. The reformulated problem can then be dealt with by methods
developed in nonlinear programming. Recently, Yang and Huang [35] used the Fischer–
Burmeister function to reformulate MPCC as a nonsmooth constrained optimization problem
and applied Rockafellar’s augmented Lagrangian method to solve the resulting constrained
optimization problem. A partial augmented Lagrangian method was also proposed in [14]
for solving MPCC. The convergence of the Lagrangian methods was analyzed in [14,35] in
terms of their first and second order optimality conditions under the boundedness assump-
tion of the multiplier sequence. Convergence properties of augmented Lagrangian meth-
ods for constrained nonconvex optimization have been investigated by many researchers
[1–3,5,16,17,21,23,25,26,34].

The purpose of this paper is to study the convergence properties of augmented Lagrang-
ian methods based on two classes of Lagrangian functions for MPCC. In particular, we are
concerned with the following question: When does the augmented Lagrangian method con-
verge to a global solution of MPCC if the Lagrangian relaxation problems can be solved
globally? To answer this question, we propose four modified augmented Lagrangian meth-
ods that adopt safeguarding strategy, conditional multiplier updating rule, penalty parameter
updating criteria and normalization of the multipliers, respectively. The convergence to a
global solution is proved for these modified augmented Lagrangian methods without appeal-
ing to the boundedness assumption on the multipliers. The convergence results obtained in
this paper provide theoretical foundations for the use of augmented Lagrangian methods for
mathematical programs with complementarity constraints.

The paper is organized as follows. In Sect. 2, we introduce two classes of augmented
Lagrangian functions for MPCC. In Sect. 3, we present the convergence properties of the
basic augmented Lagrangian method for MPCC under standard assumptions. The modified
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augmented Lagrangian method with safeguarding is investigated in Sect. 4. In Sect. 5, we
establish the convergence results of the augmented Lagrangian method with the conditional
multiplier updating. The use of penalty parameter updating criteria and the normalization of
multipliers are discussed in Sect. 6. Finally, some concluding remarks are given in Sect. 7.

2 Two classes of augmented Lagrangian functions

In this section, we describe two classes of augmented Lagrangian functions for MPCC. The
augmented Lagrangian methods investigated in the subsequent sections are based on these
two classes of functions.

A function φ : R
2 → R is called an NCP function if it satisfies

φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

Examples of φ include the min-function φmin(a, b) = 1
2

(
a + b − √

(a − b)2
)

, the Fischer–

Burmeister function φFB(a, b) = a + b − √
a2 + b2, and the Mangasarian function φM

(a, b) = θ(|a − b|) − θ(a) − θ(b), where θ : R → R is a strictly increasing function with
θ(0) = 0 [22]. Observe that φFB and φmin are smooth on R

2 except at (0, 0) and the line
a = b. Note also that φM is smooth when taking θ(t) = 1

2 t |t | or t3. Recently, a new class of
NCP-functions φKYF(a, b) = ψ0(ab)−ψ1(−a,−b) are given in [15], where ψ0 : R → R+
and ψ1 : R

2 → R+ satisfy

ψ0(t) = 0 ⇔ t ≤ 0, ψ1(a, b) = 0 ⇔ a ≤ 0, b ≤ 0.

Notice that when settingψ0(t) = [max{0, t}]p ,ψ1(a, b) = [(max{0, a})2+(max{0, b})2]p/2

or ψ1(a, b) =
[
max

{
0, a + b + √

a2 + b2
}]p

, where p > 1, φKYF is continuously differ-

entiable up to (p − 1)th order.
Now, let φ be an NCP function. Then MPCC can be reformulated as the following con-

strained optimization problem:

(P) min f (x)
s.t. φi (x) = φ(Gi (x), Hi (x)) = 0, i = 1, . . . ,m1,

g j (x) ≤ 0, j = 1, . . . ,m2,

hl(x) = 0, l = 1, . . . ,m3,

x ∈ X.

Let �(x) = (φ1(x), . . . , φm1(x))
T , g(x) = (g1(x), . . . , gm2(x))

T , h(x) = (h1(x), . . . ,
hm3(x))

T . The augmented Lagrangian of Rockafellar and Wets associated with (P) [29,
Chapt. 11, Sect. K ∗] is defined as

L1(x, µ, λ, ν, c) = f (x)− µT�(x)+ cσ1(�(x))− νT h(x)+ cσ3(h(x))

+ min
g(x)+z≤0

[
−λT z + cσ2(z)

]
, (1)

where c > 0, x ∈ X and (µ, λ, ν) ∈ R
m1 × R

m2 × R
m3 , and the function σi : R

mi → R

satisfies the following conditions (i = 1, 2, 3):

(A1) σi is a strictly convex function on R
mi ;

(A2) σi (0) = 0 and 0 is the unique minimizer of σi over R
mi ;

(A3) lim‖z‖→∞ σi (z)‖z‖ = +∞.
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Obviously, σ(z) = ‖z‖γ with γ > 1 satisfies conditions (A1)–(A3). The augmented
Lagrangian defined in (1) includes a wide class of augmented Lagrangian functions in the
literature. When σi (i = 1, 2, 3) are separable and twice continuously differentiable, L1

reduces to the essentially quadratic augmented Lagrangian function [3,33]. In particular,
when σi (z) = 1

2‖z‖2
2 for i = 1, 2, 3, L1 becomes Rockafellar’s augmented Lagrangian in

[28]:

L R
1 (x, µ, λ, ν, c) = f (x)− µT�(x)+ c

2
‖�(x))‖2 − νT h(x)+ c

2
‖h(x)‖2

+ 1

2c

m2∑
j=1

{
[max(0, λ j + cg j (x))]2 − λ2

j

}
. (2)

Note that when setting φ = φFB, the above function reduces to the augmented Lagrangian
in [35].

Another general class of augmented Lagrangians for (P) is given by Mangasarian [21] as
follows:

L2(x, µ, λ, ν, c) = f (x)+ 1

c

m1∑
i=1

[θ(cφi (x)+ µi )− θ(µi )]

+ 1

c

m2∑
j=1

[
θ(cg j (x)+ λ j )+−θ(λ j )

]+ 1

c

m3∑
l=1

[θ(chl(x)+ νl)− θ(νl)] ,

(3)

where c > 0, x ∈ X , (µ, λ, ν) ∈ R
m1 × R

m2 × R
m3 , θ(s)+ = θ(s) if s ≥ 0 and θ(s)+ = 0

otherwise, and the function θ : R → R satisfies the following conditions:

(B1) θ is continuously differentiable and strictly convex on R;
(B2) θ(0) = 0, θ ′ mapsR ontoR and θ ′(0) = 0;
(B3) θ(s)

|s| → ∞, (|s| → ∞).

Note that L2(x, µ, λ, ν, c) is not concave with respect to (µ, λ, ν) [21, Remark 2.13]. Observe
also that L2 reduces to L R

1 when setting θ(s) = 1
2 s2. We see that if θ is twice differ-

entiable and θ ′′(0) = 0, then L2(x, µ, λ, ν, c) is twice differentiable with respect to x
when φ, f and all gi are twice differentiable. Examples of θ that satisfy conditions (B1)–
(B3) and θ ′′(0) = 0 include θ(s) = 1

ρ
|s|ρ (ρ > 2), θ(s) = 1

2 (e
s + e−s) − 1

2 s2 − 1 and

θ(s) = 1
2

[
(es + e−s)/2 − 1

]2.

3 Basic primal–dual scheme

In this section, we present the basic primal–dual scheme based on the two classes of aug-
mented Lagrangians L j ( j = 1, 2) in the previous section and discuss its convergence to a
global optimal solution to MPCC under standard conditions.

The augmented Lagrangian relaxation problem associated with L j ( j = 1, 2) is

d j
c (µ, λ, ν) = min

x∈X
L j (x, µ, λ, ν, c), j = 1, 2. (4)

Let

P(y, λ, c) = min
y+z≤0

[
−λT z + cσ2(z)

]
. (5)
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Condition (A3) for σ2 ensures that P(y, λ, c) > −∞ for any y, λ ∈ R
m2 . Moreover, since

−λT z + cσ2(z) is a strictly convex function of z, the minimization problem in (5) has a
unique global optimal solution π(y, λ, c). We have the following result.

Proposition 1 The dual function d1
c is a concave function on R

m1 × R
m2 × R

m3 . Moreover,
for any (µ̄, λ̄, ν̄) ∈ R

m1 × R
m2 × R

m3 with d1
c (µ̄, λ̄, ν̄) > −∞, (−�(x̄),−π(g(x̄), λ̄, c),−

h(x̄)) is an ε-subgradient of d1
c at (µ̄, λ̄, ν̄), where x̄ is an ε-approximate optimal solution

to the relaxation problem (4) associated with L1, i.e.,

L1(x̄, µ̄, λ̄, ν̄, c) ≤ L1(x, µ̄, λ̄, ν̄, c)+ ε, ∀x ∈ X.

Proof From (5), P(g(x), λ, c) is the minimum of linear functions of λ. Thus P(g(x), λ, c)
is a concave function of λ. Since

L1(x, µ, λ, ν, c) = f (x)− µT�(x)+ cσ1(�(x))+ P(g(x), λ, c)− νT h(x)+ cσ3(h(x)),

we infer that d1
c (µ, λ, ν) is also a concave function of (µ, λ, ν). Moreover, from (5), it

is easy to see that −π(g(x̄), λ̄, c) is a subgradient of P(g(x̄), λ, c) at λ̄. Thus, for any
(µ, λ, ν) ∈ R

m1 × R
m2 × R

m3 , we have

d1
c (µ, λ, ν) = min

x∈X
L1(x, µ, λ, ν, c)

≤ L1(x̄, µ, λ, ν, c)

= f (x̄)− µT�(x̄)+ cσ1(�(x̄))+ P(g(x̄), λ, c)− νT h(x̄)+ cσ3(h(x̄))

≤ f (x̄)− µ̄T�(x̄)+ cσ1(�(x̄))+ P(g(x̄), λ̄, c)− ν̄T h(x̄)+ cσ3(h(x̄))

−�(x̄)T (µ− µ̄)− π(g(x̄), λ̄, c)T (λ− λ̄)− h(x̄)T (ν − ν̄)

≤ d1
c (µ̄, λ̄, ν̄)−�(x̄)T (µ− µ̄)− π(g(x̄), λ̄, c)T (λ− λ̄)− h(x̄)T (ν − ν̄)+ ε,

which implies that
(−�(x̄),−π(g(x̄), λ̄, c),−h(x̄)

)
is an ε-subgradient of d1

c at (µ̄, λ̄, ν̄).
�

We now describe the basic primal–dual method based on L1 and L2. Define h j (x, d, c) =
(h j

1(x, d, c), . . . , h j
m j (x, d, c))T ( j = 1, 2, 3) with

h1
i (x, µ, c) =

{−φi (x), for L1

(1/c)
[
θ ′ (cφi (x)+ µi )− θ ′(µi )

]
, for L2

h2
i (x, λ, c) =

{−zi , for L1

(1/c)
[
θ ′ (cgi (x)+ λi )+ − θ ′(λi )

]
, for L2

(6)

h3
i (x, ν, c) =

{−hi (x), for L1

(1/c)
[
θ ′ (chi (x)+ νi )− θ ′(νi )

]
, for L2

where z = (z1, . . . , zm2)
T is the optimal solution of problem (5).

Algorithm 1 (Basic primal–dual method)

Step 0. (Initialization) Select two positive sequences {ck}∞k=0 and {εk}∞k=0 with εk → 0 as
k → ∞. Choose µ0 ∈ R

m1 , λ0 ∈ R
m2 , ν0 ∈ R

m3 . Set k = 0.
Step 1. (Relaxation problem) Compute an xk ∈ X such that

L j (x
k, µk, λk, νk, ck) ≤ min

x∈X
L j (x, µ

k, λk, νk, ck)+ εk ( j = 1, 2). (7)
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For L1, compute the optimal solution zk = π(g(xk), λk, ck) to the following convex
problem

min{−(λk)T z + ckσ2(z) | g(xk)+ z ≤ 0}. (8)

Step 2. (Multiplier updating) Compute
⎧⎨
⎩
µk+1 = µk + ckh1(xk, µk, ck),

λk+1 = λk + ckh2(xk, λk, ck),

νk+1 = νk + ckh3(xk, νk, ck).

(9)

Step 3. Set k := k + 1, go to Step 1.

Remark 1 By Proposition 1 and Step 1, (−�(xk),−zk,−h(xk)) is an εk-subgradient of the
dual function d1

ck at (µk, λk, νk). Thus, the multiplier update (9) for L1 can be viewed as

executing an εk-steepest ascent step for maximizing the dual function d1
ck

with step-size ck .
Also, note that

∂L2(x, µ, λ, ν, c)

∂µi
= 1

c
[θ ′(cφi (x)+ µi )− θ ′(µi )],

∂L2(x, µ, λ, ν, c)

∂λi
= 1

c
[θ ′(cgi (x)+ λi )+ − θ ′(λi )],

∂L2(x, µ, λ, ν, c)

∂νi
= 1

c
[θ ′(chi (x)+ νi )− θ ′(νi )].

Thus, the multiplier update (9) for L2 is an εk-steepest ascent step for maximizing the dual
function d2

ck
with stepsize ck .

We need the following assumption:

Assumption 1 f = inf x∈X f (x) > −∞.

Assumption 1 and conditions (A1)–(A3) for σi (i = 1, 2, 3) ensure that Step 1 is well defined.
Obviously, Assumptions 1 is satisfied if X is a compact set. We point out that Assumption 1
is standard in the convergence analysis for augmented Lagrangian methods for constrained
global optimization [18,19,33].

The following convergence result for Algorithm 1 can be proved by using similar argu-
ments as in the proof of Proposition 2.1 in [3].

Theorem 1 Assume that Assumption1, (A1)–(A3) for σi (i = 1, 2, 3) and (B1)–(B3) for θ
are satisfied. Suppose that {(µk, λk, νk)} is bounded. If ck → ∞ as k → ∞, then each limit
point of the sequence {xk} generated by Algorithm1 is a global optimal solution to MPCC.

We point out that the boundedness assumption for {(µk, λk, νk)} is essential for ensuring
the convergence result of Theorem 1, whereas the multiplier update of {(µk, λk, νk)} in Step
3 does not affect the convergence. In the subsequent sections, we will propose four differ-
ent algorithmic strategies to modify the basic primal–dual method so as to circumvent the
boundedness condition of the multipliers in Theorem 1.

4 Modified augmented Lagrangian method using safeguarding

In this section, we use the safeguarding technique to modify the basic primal–dual algorithm
[1,2,4,18]. This simple technique ensures the boundedness of the multiplier sequence by
projecting the multipliers in Step 2 of Algorithm 1 onto suitable bounded intervals.
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Algorithm 2 (Modified primal–dual method using safeguarding)

Step 0. (Initialization) Choose a positive sequence {εk}∞k=1 with εk → 0 as k → ∞. Choose

γ > 1, δ ∈ (0, 1), c1 > 0, −∞ < α
j
i < β

j
i < ∞ for i = 1, . . . ,m j , j ∈ {1, 2, 3}.

Let Tj = {z ∈ R
m j | α j

i ≤ zi ≤ β
j

i , i = 1, . . . ,m j }, j = 1, 2, 3. Choose µ̄1 ∈ T1,
λ̄1 ∈ T2 and ν̄1 ∈ T3. Set ρ0 = 1 and k = 1.

Step 1. (Relaxation problem) Compute an xk ∈ X such that

L j (x
k, µ̄k, λ̄k, ν̄k, ck) ≤ min

x∈X
L j (x, µ̄

k, λ̄k, ν̄k, ck)+ εk, j = 1, 2. (10)

For L1, compute also a zk such that

zk = arg min{−(λ̄k)T z + ckσ2(z) | g(xk)+ z ≤ 0}. (11)

Step 2. (Multiplier updating) Compute
⎧⎨
⎩
µk+1 = µ̄k + ckh1(xk, µ̄k, ck),

λk+1 = λ̄k + ckh2(xk, λ̄k, ck),

νk+1 = ν̄k + ckh3(xk, ν̄k, ck).

(12)

Step 3. (Safeguarding projection) Compute
⎧⎨
⎩
µ̄k+1 = PT1(µ

k+1),

λ̄k+1 = PT2(λ
k+1),

ν̄k+1 = PT3(ν
k+1),

(13)

where PTj (z) denotes the Euclidean projection of z on Tj .
Step 4. (Parameter updating) Let ρk = ‖(h1(xk, µ̄k, ck), h2(xk, λ̄k, ck), h3(xk, ν̄k, ck))‖. If

ρk ≤ δρk−1, (14)

set ck+1 = ck , otherwise, set ck+1 = γ ck . Set k := k + 1 and go to Step 1.

We first discuss the convergence of Algorithm 2 using L1.

Theorem 2 Assume that Assumption1 and (A1)–(A3) for σi (i = 1, 2, 3) are satisfied. Then,
each limit point of the sequence {xk} generated by Algorithm2 using L1 is a global optimal
solution to MPCC.

Proof Let x∗ be a global solution to MPCC. By (10) in Algorithm 2, we have

L1(x
k, µ̄k, λ̄k, ν̄k, ck) ≤ L1(x

∗, µ̄k, λ̄k, ν̄k, ck)+ εk (15)

Since P(y, λ, c) defined by (5) is nondecreasing of y for fixed λ ∈ R
m2 and c > 0, g(x∗) ≤ 0

together with σ2(0) = 0 implies

P(g(x∗), λ̄k, ck) ≤ P(0, λ̄k, ck) = min
z≤0

[
−(λ̄k)T z + ckσ2(z)

]
≤ −(λ̄k)T · 0 + ckσ2(0) = 0

for all k. Note that the feasibility of x∗ implies h(x∗) = 0 and �(x∗) = 0. Also, σ j (0) = 0
for j = 1, 3. Therefore, by the definition of L1, we have from (15) that

f (xk)− (µ̄k)T�(xk)+ ckσ1(�(x
k))− (ν̄k)T h(xk)+ ckσ3(h(x

k))

+ min
g(xk )+z≤0

[
−(λ̄k)T z + ckσ2(z)

]
≤ f (x∗)+ εk . (16)
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Since zk is the optimal solution of problem (11), it follows from (11) and (16) that

g(xk)+ zk ≤ 0, ∀k, (17)

f (xk)− (µ̄k)T�(xk)+ ckσ1(�(x
k))− (ν̄k)T h(xk)+ ckσ3(h(x

k))

−(λ̄k)T zk + ckσ2(z
k) ≤ f (x∗)+ εk . (18)

Case (i): ck → ∞ as k → ∞. Define σ(u, v, z) = σ1(u) + σ2(z) + σ3(v). Let τ k =
(uk, vk, zk), where uk = �(xk), vk = h(xk). By Assumption 1, f = inf x∈X f (x) > −∞.
It follows from (18) that

−
(
µ̄k

ck

)T

uk −
(
ν̄k

ck

)T

vk −
(
λ̄k

ck

)T

zk + σ(τ k) ≤ 1

ck
[ f (x∗)− f + εk]. (19)

We claim that {τ k} is bounded. Otherwise, suppose, without loss of generality, that ‖τ k‖ →
∞ (k → ∞). Since {(µ̄k, λ̄k, ν̄k)} ⊂ T1 × T2 × T3 is bounded by Step 3 of the algorithm,
we deduce from (19) that

lim sup
k→∞

σ(τ k)

‖τ k‖ ≤ 0. (20)

Now, by conditions (A1)–(A3) for σ j ( j = 1, 2, 3), σ is a strictly convex function with
σ(τ) ≥ 0 on R

m1+m2+m3 and σ(0) = 0. Thus, using Corollary 3.27 in [29], we obtain
lim infk→∞ σ(τ k)/‖τ k‖ > 0, a contradiction to (20).

Now assume, without loss of generality, that τ k = (uk, vk, zk) → τ̄ = (ū, v̄, z̄) as
k → ∞. It follows from (19) that

σ(τ̄ ) ≤ lim inf
k→∞ σ(τ k)

≤ lim inf
k→∞

{
1

ck
[ f (x∗)− f + εk] +

(
µ̄k

ck

)T

uk +
(
ν̄k

ck

)T

vk +
(
λ̄k

ck

)T

zk

}
= 0.

Since σ(τ) ≥ 0 and σ(0) = 0, we have τ̄ = (ū, v̄, z̄) = 0. Thus, from (17) and the definitions
of uk and vk , we have

lim
k→∞�(x

k) = 0, lim
k→∞ h(xk) = 0, lim sup

k→∞
g(xk) ≤ 0. (21)

On the other hand, it follows from (18) that

f (xk)− (µ̄k)T�(xk)− (ν̄k)T h(xk)− (λ̄k)T zk ≤ f (x∗)+ εk, for all k. (22)

Since {(µ̄k, λ̄k, ν̄k)} is bounded, zk → 0 and εk → 0, taking limit in (22) gives rise to

lim sup
k→∞

f (xk) ≤ f (x∗), (23)

which together with (21) and the closedness of X implies that any limit point x̄ of {xk} is
feasible for (P) and f (x̄) = f (x∗), i.e., x̄ is a global optimal solution to (P). Since (P) and
MPCC are equivalent, x̄ is also a global optimal solution of MPCC.

Case (ii): {ck} is bounded. In this case, condition (14) in Step 4 must be satisfied at
each iteration for sufficiently large k. Since δ ∈ (0, 1), we infer that ρk → 0 (k → ∞).
By (6), (17) and the definition of ρk in Step 4, we get (21). Moreover, since {(µ̄k, λ̄k, ν̄k)}
is bounded, σ j (0) = 0 ( j = 1, 2, 3) and εk → 0, taking limits in (18), we also
obtain (23). �
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Lemma 1 ([21])

(i) θ ′(s + t)− θ ′(t) = 0 ⇒ s = 0;
(ii) θ ′(s + t)+ − θ ′(t) = 0 ⇒ s ≤ 0, t ≥ 0, st = 0.

Next, we give the convergence result for Algorithm 2 when using L2.

Theorem 3 Assume that Assumption1 and (B1)–(B3) for θ are satisfied. Then, each limit
point of the sequence {xk} generated by Algorithm 2 using L2 is a global optimal solution
to MPCC.

Proof Let x∗ be a global solution to (MPCC). By (10), we have

L2(x
k, µ̄k, λ̄k, ν̄k, ck) ≤ L2(x

∗, µ̄k, λ̄k, ν̄k, ck)+ εk . (24)

By (B1)–(B2), θ(s) ≥ 0 for s ∈ R and θ ′ is strictly increasing on R. Also θ ′(0) = 0 and
θ ′(s) ≥ 0 for s ≥ 0 imply that θ ′(s)+ ≥ 0 for s ∈ R. Thus, θ(·)+ is monotonically increasing
on R. Since g j (x∗) ≤ 0, θ is nonnegative and θ(0) = 0, it holds

θ(ck g j (x
∗)+ λ̄k

j )+ ≤ θ(λ̄k
j )+ ≤ θ(λ̄k

j )

for all j and k. Also, the feasibility of x∗ implies φi (x∗) = 0 for all i and h(x∗) = 0. So, by
the definition of L2 and (24) we have

f (xk)+ 1

ck

m1∑
i=1

[θ(ckφi (x
k)+ µ̄k

i )− θ(µ̄k
i )] + 1

ck

m2∑
j=1

[θ(ck g j (x
k)+ λ̄k

j )+ − θ(λ̄k
j )]

+ 1

ck

m3∑
l=1

[θ(ckhl(x
k)+ ν̄k

l )− θ(ν̄k
l )] ≤ f (x∗)+ εk . (25)

Let x̄ be a limit point of {xk}, and K ⊂ {1, 2, . . .} be such that xk → x̄(k ∈ K). The
closedness of X implies x̄ ∈ X .

Case (i): ck → ∞ as k → ∞. We first prove that g j (x̄) ≤ 0, j = 1, . . . ,m2. Suppose
that there exists j0 such that g j0(x̄) > 0. Let ε = g j0(x̄)/2. Then there exists k0 > 0 such
that g j0(x

k) ≥ ε for k ≥ k0, k ∈ K. Thus, ck g j0(x
k)+ λ̄k

j0
≥ ckε + λ̄k

j0
for k ≥ k0, k ∈ K.

By the monotonicity of θ(·)+, we have

θ(ck g j0(x
k)+ λ̄k

j0)+ ≥ θ(ckε + λ̄k
j0)+ for k ≥ k0, k ∈ K. (26)

By Step 3 of the algorithm, {(µ̄k, λ̄k, ν̄k)} ⊂ T1 × T2 × T3 is bounded. Using (26) and
Assumption 1, we obtain from (25) that

f (x∗)+ εk ≥ f − 1

ck

m1∑
i=1

θ(µ̄k
i )+

1

ck
θ(ck g j0(x

k)+λ̄k
j0)+− 1

ck

m2∑
j=1

θ(λ̄k
j )− 1

ck

m3∑
l=1

θ(ν̄k
l )

≥ f − 1

ck

m1∑
i=1

θ(µ̄k
i )+ 1

ck
θ(ckε + λ̄k

j0)+ − 1

ck

m2∑
j=1

θ(λ̄k
j )− 1

ck

m3∑
l=1

θ(ν̄k
l )

→ ∞ (k → ∞, k ∈ K),
where the third term in the last inequality tends to ∞ due to ck → ∞, condition (B3) and the
boundedness of {λ̄k}, while the second, forth and fifth terms all tend to zero because of the
continuity of θ and the boundedness of {(µ̄k, λ̄k, ν̄k)}. The above contradiction implies that
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g j (x̄) ≤ 0, j = 1, . . . ,m2. Similarly, we can prove φi (x̄) = 0, i = 1, . . . ,m1 and h(x̄) = 0,
and therefore x̄ is a feasible solution to MPCC.

On the other hand, it follows from (25) that

f (xk)− 1

ck

m1∑
i=1

θ
(
µ̄k

i

)
− 1

ck

m2∑
j=1

θ
(
λ̄k

j

)
− 1

ck

m3∑
l=1

θ
(
ν̄k

l

)
≤ f (x∗)+ εk . (27)

Since {(µ̄k, λ̄k, ν̄k)} is bounded, εk → 0 and θ is continuous, taking limit in (27) with respect
to k ∈ K gives rise to

f (x̄) ≤ f (x∗).

Hence, f (x̄) = f (x∗) and by the feasibility of x̄ , x̄ is a global optimal solution to MPCC.
Case (ii): {ck} is bounded as k → ∞. From Step 3, we have ρk → 0 (k → ∞) and

ck = ck0 for k large enough. By the definition of ρk , we have h j (xk, µ̄k, ck) → 0 as
k → ∞, j = 1, 2, 3, which, by the definition of h j [cf.(6)], implies

⎧⎪⎨
⎪⎩

limk→∞ 1
ck

[
θ ′(ckφi (xk)+ µ̄k

i )− θ ′ (µ̄k
i

)] = 0, i = 1, . . . ,m1,

limk→∞ 1
ck

[
θ ′(ck g j (xk)+ λ̄k

j )+ − θ ′
(
λ̄k

j

)]
= 0, j = 1, . . . ,m2,

limk→∞ 1
ck

[
θ ′(ckhl(xk)+ ν̄k

l )− θ ′ (ν̄k
l

)] = 0, l = 1, . . . ,m3.

Note that {(µ̄k, λ̄k, ν̄k)} is bounded. Without loss of generality, we may assume that
(µ̄k, λ̄k, ν̄k) → (µ̄, λ̄, ν̄)(k → ∞, k ∈ K). Thus

⎧
⎨
⎩
θ ′(ck0φi (x̄)+ µ̄i )− θ ′(µ̄i ) = 0, i = 1, . . . ,m1,

θ ′(ck0 g j (x̄)+ λ̄ j )+ − θ ′(λ̄ j ) = 0, j = 1, . . . ,m2,

θ ′(ck0 hl(x̄)+ ν̄l)− θ ′(ν̄l) = 0, l = 1, . . . ,m3.

(28)

By Lemma 1, we have
{
φi (x̄) = 0, i = 1, . . . ,m1, h(x̄) = 0,
g j (x̄) ≤ 0, λ̄ j ≥ 0, λ̄ j g j (x̄) = 0, j = 1, . . . ,m2.

(29)

Thus, x̄ is feasible to MPCC.
Let W (s, t) = θ(s + t)+ −θ(t). By (B1)–(B3), we see that W (s, t) is convex with respect

to s for fixed t ∈ R. Also, W (0, t) ≤ 0 for t ∈ R and W ′
s(s, t) = θ ′(s + t)+. Thus,

0 ≥ W (0, t) ≥ W (s, t)+ (0 − s)W ′
s(s, t), ∀s ∈ R,

this is

sθ ′(s + t)+ ≥ W (s, t), ∀s ∈ R, t ∈ R. (30)

Note also that

W (s, t) ≥ θ(t)+ − θ(t)+ sθ ′(t)+, ∀s ∈ R, t ∈ R. (31)

It then follows from (30)–(31) that for k large enough,

1

ck

[
θ

(
λ̄k

j

)
+ − θ

(
λ̄k

j

)]
+ g j (x

k)θ ′ (λ̄k
j

)
+ ≤ 1

ck
W

(
ck g j (x

k), λ̄k
j

)

≤ g j (x
k)θ ′ (ck g j (x

k)+ λ̄k
j

)
+
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for all j . Taking limits in the above inequality and using (28)–(29) and θ ′(0) = 0, we obtain

lim
k→∞,k∈K

1

ck
W

(
ck g j (x

k), λ̄k
j

)
= g j (x̄)θ

′(λ̄ j ) = 0, j = 1, . . . ,m2.

Using similar arguments, we can prove that

lim
k→∞,k∈K

1

ck

[
θ

(
ckφi (x

k)+ µ̄k
i

)
− θ

(
µ̄k

i

)]
= 0, i = 1, . . . ,m1,

lim
k→∞,k∈K

1

ck

[
θ

(
ckhl(x

k)+ ν̄k
l

)
− θ

(
ν̄k

l

)]
= 0, l = 1, . . . ,m3.

Hence, we obtain from (25) that f (x̄) ≤ f (x∗), which combined with the feasibility of x̄
implies that x̄ is a global optimal solution to MPCC. �

5 Modified augmented Lagrangian method with conditional multiplier updating

In this section, we discuss an alternative strategy to modify the basic primal–dual algorithm
using L1 for solving MPCC. The underlying idea is to modify Step 3 of Algorithm 1 so that
the multipliers remain unchanged unless certain reduction of the norm of the subgradient
of the dual function d1

c is achieved. Similar idea for multiplier updating was used in [5] for
smooth equality constrained optimization problem.

Algorithm 3 (Modified primal–dual method with conditional multiplier updating)

Step 0. Choose initial multiplier vectors λ0, µ0, ν0 and the constants c0 > 1, u0 > 0,
v0 > 0, τ > 1, γ1 ∈ (0, 1), 0 ≤ ε � 1, αη > 0.5, βη > 0, αω > 0, βω > 0. Set
α0 = min( 1

c0
, γ1), ε0 = v0 (α0)

αω , and η0 = u0 (α0)
αη , and k = 0.

Step 1. Find an xk satisfying

L1(x
k, µk, λk, νk, ck) ≤ min

x∈X
L1(x, µ

k, λk, νk, ck)+ εk, (32)

Step 2. Compute the optimal solution zk to the following convex problem

min{−(λk)T z + ckσ2(z) | g(xk)+ z ≤ 0}.
Let ρk = ‖(�(xk)T , (zk)T , h(xk)T )‖. If

ρk ≤ ηk, (33)

go to Step 3. Otherwise, go to Step 4.
Step 3. If ρk ≤ ε, stop. Otherwise, set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µk+1 = µk − ck�(xk),

λk+1 = λk − ck zk,

νk+1 = νk − ckh(xk),

ck+1 = ck,

αk+1 = min
(

1
ck+1

, γ1

)
,

εk+1 = εk(αk+1)
βω ,

ηk+1 = ηk (αk+1)
βη ,

(34)

Set k := k + 1, go to Step 1.
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Step 4. Set
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µk+1 = µk, λk+1 = λk, νk+1 = νk,

ck+1 = τck,

αk+1 = min
(

1
ck+1

, γ1

)
,

εk+1 = v0(αk+1)
αω ,

ηk+1 = u0 (αk+1)
αη .

(35)

Set k := k + 1, go to Step 1.

Let ε = 0 in Algorithm 3 and ωk = (µk, λk, νk). The following lemmas can be proved
by using the similar arguments as in the proofs of Lemma 4.1 in [5] and Lemma 2 in [18].

Lemma 2 If ck → ∞ when Algorithm3 is executed, then limk→∞ ωk√
ck

= 0.

Lemma 3 If {ck} is bounded when Algorithm3 is executed, then {ωk} is convergent.

We now present the convergence results for Algorithm 3. We assume that the condition
(A3) for σ j ( j = 1, 2, 3) is replaced by the following condition:

(A3′) There exist ξ j > 0 ( j = 1, 2, 3) such that

σ j (z) ≥ ξ j‖z‖2, j = 1, 2, 3, ∀z ∈ R
m j . (36)

Note that condition (A3′) implies condition (A3).

Theorem 4 Assume that Assumption1, (A1)–(A2) and (A3′) for σ j ( j = 1, 2, 3) are satis-
fied. Then, each limit point of the sequence {xk} generated by Algorithm3 is a global optimal
solution to MPCC.

Proof Let x∗ be a global solution to MPCC. Similar to the proof of Theorem 2, we have

g(xk)+ zk ≤ 0, ∀k, (37)

f (xk)− (µk)T�(xk)+ ckσ1(�(x
k))− (νk)T h(xk)+ ckσ3(h(x

k))

−(λk)T zk + ckσ2(z
k) ≤ f (x∗)+ εk . (38)

Suppose that xk → x̄ as k → ∞ and k ∈ K ⊆ {1, 2, . . .}. The closedness of X implies
x̄ ∈ X . We consider the following two cases.

Case (i): ck → ∞ when the algorithm is executed. By Lemma 2, it holds

lim
k→∞

ωk

√
ck

= 0, (39)

which implies limk→∞ ωk

ck
= 0, where ωk = (µk, λk, νk). Using the similar arguments as

in the proof of Theorem 2, we can infer from (37) and (38) that x̄ is a feasible solution to
MPCC.

On the other hand, using Cauchy–Schwartz inequality, it follows from (36) and (38) that

f (x∗)+ εk ≥ f (xk)− (µk)T�(xk)+ ckσ1(�(x
k))

−(νk)T h(xk)+ ckσ3(h(x
k))− (λk)T zk + ckσ2(z

k)

≥ f (xk)− ‖µk‖‖�(xk)‖ + ckξ1‖�(xk)‖2

−‖νk‖‖h(xk)‖ + ckξ3‖h(xk)‖2 − ‖λk‖‖zk‖ + ξ2ck‖zk‖2

≥ f (xk)− ‖µk‖2

4ξ1ck
− ‖λk‖2

4ξ2ck
− ‖νk‖2

4ξ3ck
,
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where the last inequality follows from the fact that the minimum of the convex function

−bt + at2 (a > 0) over R is − b2

4a . Since εk → 0 as k → ∞, taking limits in the above
inequality and using (39) give rise to f (x̄) ≤ f (x∗). Thus, f (x̄) = f (x∗) and by the
feasibility of x̄ , x̄ is a global optimal solution to MPCC.

Case (ii): {ck} is bounded when the algorithm is executed. Then Step 2 must be executed
at each iteration for k sufficiently large. This implies that (33) is always satisfied for k large
enough. Hence ηk → 0 and ρk → 0. By Lemma 3, {(µk, λk, νk)} converges. Also, from the
algorithm, we have εk → 0. Similar to Case (ii) in the proof of Theorem 2, we can infer from
(37) and (38) that x̄ is a global optimal solution to MPCC. �

6 Penalty parameter updating and normalization of multipliers

In this section, we investigate the use of two other strategies in modifying the basic augmented
Lagrangian algorithm when using L1 or L2.

We first investigate the strategy of updating the penalty parameter ck using the information
of multiplier [12,27,34].

Theorem 5 Assume that Assumption1, (A1)–(A2) and (A3′) for σ j ( j = 1, 2, 3) and (B1)–
(B3) for θ are satisfied. Let ck in Algorithm1 be updated by the following formulations:

ck+1 =
⎧
⎨
⎩

ck

[
max

{
γ,

∑m1
i=1

∣∣∣µk+1
i

∣∣∣ ,∑m2
j=1

∣∣∣λk+1
j

∣∣∣ ,∑m3
l=1

∣∣∣νk+1
l

∣∣∣
}]2

, for L1

ck max
{
γ,

∑m1
i=1 θ

(
µk+1

i

)
,
∑m2

j=1 θ
(
λk+1

j

)
,
∑m3

l=1 θ
(
νk+1

l

)}
, for L2

(40)

where γ > 1. Then each limit point of the sequence {xk} generated by the modified Algo-
rithm1 is a global optimal solution to MPCC.

Proof We first prove the theorem for L1. Let x∗ be a global solution to (P). Similar to the
proof of Theorem 2, we have (37) and (38). Since γ > 1, we see from (40) that ck → ∞ as
k → ∞. Again, from (40), we have

1√
ck

≥
∑m1

i=1 |µk+1
i |√

ck+1
≥ 0.

Thus

lim
k→∞

µk

√
ck

= 0. (41)

Similarly, we have

lim
k→∞

λk

√
ck

= 0, lim
k→∞

νk

√
ck

= 0. (42)

Using the similar arguments as in Case (i) of the proof of Theorem 4, we can prove from (37),
(38), (41) and (42), that each limit point of the sequence {xk} is a global optimal solution to
MPCC.

Next, we prove the case for L2. From (40), we have

lim
k→∞

1

ck

m1∑
i=1

θ
(
µk

i

)
= 0, lim

k→∞
1

ck

m2∑
i=1

θ
(
λk

i

)
= 0, lim

k→∞
1

ck

m3∑
i=1

θ
(
νk

i

)
= 0. (43)
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Similar to Case (i) in the proof of Theorem 3, using (43), we can deduce from (25) (with
(µ̄k, λ̄k, ν̄k) replaced by (µk, λk, νk)) that each limit point of the sequence {xk} is a global
optimal solution to MPCC. �

Next, we consider another approach to guarantee the boundedness of multipliers in the
basic augmented Lagrangian method. The idea is to normalize the multipliers in the aug-
mented Lagrangians L j ( j = 1, 2). Similar idea was used in [6] for constructing another type
of augmented Lagrangian function. Let

µ̄k = µk

1 + ‖µk‖ , λ̄k = λk

1 + ‖λk‖ , ν̄k = νk

1 + ‖νk‖ . (44)

Replacing (µk, λk, νk) in the definition of L j ( j = 1, 2) with (µ̄k, λ̄k, ν̄k) results in the
following normalized Lagrangian functions:

L̃ j (x, µ
k, λk, νk, c) = L j (x, µ̄

k , λ̄k, ν̄k, c), j = 1, 2. (45)

Theorem 6 Let L j ( j = 1, 2) in (7) and λk in subproblem (8) in Algorithm 1 be replaced by
L̃ j ( j = 1, 2) and λ̄k , respectively. Also, let the multiplier updating in Step 2 of Algorithm 1
be replaced by

⎧
⎨
⎩
µk+1 = µ̄k + ckh1(xk, µk, ck),

λk+1 = λ̄k + ckh2(xk, λk, ck),

νk+1 = ν̄k + ckh3(xk, νk, ck).

Suppose that Assumption 1, (A1)–(A3) for σi (i = 1, 2, 3) and (B1)–(B3) for θ are satisfied.
If ck → ∞ as k → ∞, then each limit point of the sequence {xk} generated by the modified
Algorithm 1 is a global optimal solution to MPCC.

Proof We only prove the theorem for L̃1. The case for L̃2 can be proved similarly. By Step
1 of Algorithm 1 and (45), we have

L1(x
k, µ̄k, λ̄k, ν̄k, ck) ≤ min

x∈X
L1(x, µ̄

k, λ̄k, ν̄k, ck)+ εk .

Note from (44) that {(µ̄k, λ̄k, ν̄k)} is bounded. The reminder of the proof is similar to Case
(i) of the proof of Theorem 2. �

7 Concluding remarks

We have presented some new convergence properties for modified augmented Lagrangian
methods based on two classes of augmented Lagrangian functions for MPCC. The main
contribution of the paper is an investigation of different strategies for modifying the basic
primal–dual method so that the convergence to a global optimal solution can be achieved
without appealing to the restrictive assumption on the boundedness of the multipliers. The
results obtained in this paper may help to understand the global behaviors of augmented
Lagrangian methods for MPCC.
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